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Generalization of the Hylleraas functional for calculating
BSSE-free intermolecular interactions:

further considerations
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The generalized Hylleraas functional necessary for calculating BSSE-free intermolecu-
lar interactions is presented for the case when exclusion of BSSE results in non-Hermitian
operators and the intra- and intermolecular interactions are treated in different orders of per-
turbations.
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1. Introduction

In the recent past, we managed to develop two different but conceptually simi-
lar second-order intermolecular perturbation theories which are free from the so-called
“basis set superposition error” (BSSE) and based on thea priori corrected “chemical
Hamiltonian approach” (CHA) [1–5]. These two perturbation methods (they are called
“CHA-PT2” and “CHA-MP2”) differ only in the orbitals used to construct the unper-
turbed problem, and both work with non-Hermitian operators because neither the effec-
tive intramolecular Hamiltonian nor the perturbation are Hermitian.1 Therefore, to get
the equations to be used in these perturbation theories (PTs) it was first necessary to
generalize the usual Hermitian second-order Hylleraas functional form [6] for the case
of a non-Hermitian unperturbed part and also a non-Hermitian perturbation [7]. The
encouraging numerical results of these PTs usually giving a striking agreement with the
a posteriori corrected Boys–Bernardi ones [8,9] motivated us to continue this work. Ac-
cordingly, in a recent paper we generalized this functional up to fourth-order, in the hope
to obtain appropriate equations for a BSSE-free fourth-order intermolecular perturbation
theory in the CHA framework [10]. But, after careful considerations we concluded this
is very difficult to accomplish. Therefore, it seems to be a reasonable compromise to
treat different interactions up to different orders of PT, as it is often done [11,12] in
the “symmetry adapted perturbation theory” (SAPT). Namely, we propose to work out

1 In the CHA scheme one works with non-Hermitian operators because the BSSE is not a physical phenom-
enon, so no Hermitian operators correspond to it.
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a perturbation scheme in which the intermolecular contributions to the intermolecular
interaction energy are calculated up to a higher order of PT than the intramolecular en-
ergy components, as only theirchanges contribute to the intermolecular interaction. To
achieve this, it is important to obtain the adequate form for such a “mixed-order” (sec-
ond in intra- and third order in intermolecular interactions) Hylleraas functional when
the unperturbed Hamiltonian and also the intra- and intermolecular perturbations are not
Hermitian. The purpose of the present work is to derive the expression of the corre-
sponding functional.

In the following section the same technique will be applied as in [10], only the
intra- and intermolecular perturbation will be treated separately.

2. Hylleraas functional based on a non-Hermitian unperturbed Hamiltonian:
second order for intra- and third order for intermolecular interactions

Let us consider again the usual Born–Oppenheimer Hamiltonian which is Her-
mitian, and let us now divide it into three parts, the following equation can be obtained:

Ĥ = Ĥ 0+ V̂ + Ŵ = Ĥ 0† + V̂ † + Ŵ † = Ĥ †
. (1)

The dagger (†) denotes the Hermitian conjugate (or adjoint) of the operator. HereĤ ,
V̂ andŴ are the unperturbed, the intramolecular and the intermolecular Hamiltonians,
respectively, and they are not Hermitian separately, only their sum is Hermitian.

The zeroth-order Schrödinger equation is

Ĥ 0|�0〉 = E0|�0〉 and 〈�0|Ĥ 0† = E∗0〈�0|, (2)

where�0 is the ground-state right eigenvector of̂H 0 and also it is the left eigenvector of
Ĥ 0†

. We use Dirac’s “bra” and “ket” formalism because of the convenience of calculat-
ing matrix elements. SincêH 0 is not Hermitian we have to allow the possibility ofE0

being complex.
Now, the following step is to introduce an appropriate form of the wavefunction:

|�〉 = |�0+ ψ1+ ψ2+ ψ3〉 = |�0〉 + |ψ1〉 + |ψ2〉 + |ψ3〉, (3)

whereψ1, ψ2 andψ3 are the first-, second- and third-order wavefunctions, respectively.
But, differently from our earlier cases [10], we need to continue further the partition

of the higher-order parts of the wavefunctions by introducing different order parameters
for the terms corresponding to the intra- and intermolecular effects:

ψ1 = ψ10
1 + ψ01

1 , ψ2 = ψ11
2 + ψ02

2 , ψ3 = ψ12
3 . (4)

In our notations the subscripts show theoverall order of the given wavefunction
component, while the superscripts indicate how the orders are distributed between intra-
and intermolecular interactions. As noted above, we are less interested in intramolecular
effects than in the intermolecular ones; accordingly, termsψ20

2 andψ21
3 are absent in the
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above expressions.2 Generally, we keep the terms up to the second order in the intra-
molecular and third order in the intermolecular interactions. We start again from the
same expectation value as in [10],

E = 〈�0+ ψ1+ ψ2+ ψ3|Ĥ |�0+ ψ1+ ψ2+ ψ3〉
〈�0+ ψ1+ ψ2+ ψ3|�0+ ψ1+ ψ2+ ψ3〉 . (5)

Let us expand this expression up to terms of orders indicated above, and keep in
mind thatE is necessarily real. In addition, we may state thatĤ 0, Ĥ 0†

, |�0〉, 〈�0|, E0

andE∗0 are zero-order,̂V , V̂
†
, Ŵ , Ŵ

†〈ψ1| and|ψ1〉 are first-order, while〈ψ2|, |ψ2〉 and
〈ψ3|, |ψ3〉 are second- and third-order quantities, respectively.

Similarly to our earlier work [10], we also do not intend to calculate here the ac-
tual form of the higher-order wavefunctions, the explicit results should come from an
independent CHA calculation (for the first order see [2]).

To consider the above-defined expectation value, one needs to substitute equa-
tions (1) and (3) into equation (5):

E= 1

〈�0|�0〉
[
〈�0|Ĥ |�0〉 + E0〈ψ1|�0〉 + 〈ψ1|V̂ + Ŵ |�0〉 + E0〈ψ2|�0〉

+ 〈ψ2|V̂ + Ŵ |�0〉 + E0〈ψ3|�0〉 + 〈ψ3|V̂ + Ŵ |�0〉 + E∗0〈�0|ψ1〉
+ 〈�0|

(
V̂ + Ŵ)†|ψ1〉 + 〈ψ1|Ĥ 0+ V̂ + Ŵ |ψ1〉 + 〈ψ2|Ĥ 0+ V̂ + Ŵ |ψ1〉

+ 〈ψ3|Ĥ 0+ V̂ + Ŵ |ψ1〉 + E∗0〈�0|ψ2〉 + 〈�0|
(
V̂ + Ŵ)†|ψ2〉

+ 〈ψ1|Ĥ 0+ V̂ + Ŵ |ψ2〉 + 〈ψ2|Ĥ 0+ V̂ + Ŵ |ψ2〉 + 〈ψ3|Ĥ 0+ V̂ + Ŵ |ψ2〉
+ E∗0〈�0|ψ3〉 + 〈�0|

(
V̂ + Ŵ )†|ψ3〉 + 〈ψ1|Ĥ 0+ V̂ + Ŵ |ψ3〉

+ 〈ψ2|Ĥ 0+ V̂ + Ŵ |ψ3〉 + 〈ψ3|Ĥ 0+ V̂ + Ŵ |ψ3〉
]

×
[
1+ 〈�0|ψ1〉
〈�0|�0〉 +

〈�0|ψ2〉
〈�0|�0〉 +

〈�0|ψ3〉
〈�0|�0〉 +

〈ψ1|�0〉
〈�0|�0〉 +

〈ψ1|ψ1〉
〈�0|�0〉

+ 〈ψ1|ψ2〉
〈�0|�0〉 +

〈ψ1|ψ3〉
〈�0|�0〉 +

〈ψ2|�0〉
〈�0|�0〉 +

〈ψ2|ψ1〉
〈�0|�0〉 +

〈ψ2|ψ2〉
〈�0|�0〉

+ 〈ψ2|ψ3〉
〈�0|�0〉 +

〈ψ3|�0〉
〈�0|�0〉 +

〈ψ3|ψ1〉
〈�0|�0〉 +

〈ψ3|ψ2〉
〈�0|�0〉 +

〈ψ3|ψ3〉
〈�0|�0〉

]−1

. (6)

Here we used equation (2), and no simplifications have been as yet introduced. However,
it can be found that several terms are of the fourth or higher order and we will neglect
them in the following. As a consequence of the Hermiticity ofĤ the terms where the
expectation value of the operatorŝH 0, V̂ andŴ or Ĥ 0†

, V̂
†

andŴ
†

have been taken
with the same function in the “bra” and “ket” are automatically real. However, there are

2 For example,ψ2 is a second-order quantity which can be written as a sum ofψ11
2 (containing first-order

excitations both in the intra- and the intermolecular pieces) andψ02
2 (where only the intermolecular part

contains second-order excitations, while the intramolecular one is in the ground state).
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terms which are not obviously real. In order to get a real energy, a special care should
be taken by expanding the total Hermitian Hamiltonian either asĤ = Ĥ 0 + V̂ + Ŵ or
asĤ = Ĥ † = Ĥ 0† + V̂ † + Ŵ †

similarly to the technique used in [5,10]. A special care
was necessary to some terms which are unsymmetric in respect of interchangingV̂ and
Ŵ , as we treat intra- and intermolecular interactions on a different footing.

These difficulties can be solved by collecting the terms which resulting the real
parts of the different contributions. Considering the expressions ofE0 andE∗0:

E0 = 〈�0|Ĥ 0|�0〉
〈�0|�0〉 , E∗0 =

〈�0|Ĥ 0†|�0〉
〈�0|�0〉 , (7)

and using the expansion(1+ x)−1 = 1− x+ x2− x3+ x4− · · · , the following formula
can be obtained up to the third order:

E≈ 1

〈�0|�0〉
[
〈�0|Ĥ |�0〉 + E0〈ψ1|�0〉 + 〈ψ1|V̂ |�0〉 + 〈ψ1|Ŵ |�0〉

+ E0〈ψ2|�0〉 + 〈ψ2|V̂ |�0〉 + 〈ψ2|Ŵ |�0〉 + E0〈ψ3|�0〉 + E∗0〈�0|ψ1〉
+ 〈�0|V̂ †|ψ1〉 + 〈�0|Ŵ †|ψ1〉 + 〈ψ1|Ĥ 0+ V̂ + Ŵ |ψ1〉 − 〈ψ10

1 |V̂ |ψ10
1 〉

+ Re
(〈ψ2|Ĥ 0|ψ1〉

)+ E∗0〈�0|ψ2〉 + 〈�0|V̂ †|ψ2〉 + 〈�0|Ŵ †|ψ2〉
+ Re

(〈ψ1|Ĥ 0|ψ2〉
)+ E∗0〈�0|ψ3〉

]
×

{
1− 1

〈�0|�0〉
[〈�0|ψ1〉 + 〈�0|ψ2〉 + 〈�0|ψ3〉 + 〈ψ1|�0〉

+ 〈ψ1|ψ1〉 + 〈ψ1|ψ2〉 + 〈ψ2|�0〉 + 〈ψ2|ψ1〉 + 〈ψ3|�0〉
]

+ 1

〈�0|�0〉2
[(〈�0|ψ1〉 + 〈ψ1|�0〉

)(〈�0|ψ1〉 + 〈�0|ψ2〉
+ 〈ψ1|�0〉 + 〈ψ2|�0〉 + 〈ψ1|ψ1〉

)
+ (〈�0|ψ2〉 + 〈ψ2|�0〉 + 〈ψ1|ψ1〉

)(〈�0|ψ1〉 + 〈ψ1|�0〉
)]

− 1

〈�0|�0〉3
(〈�0|ψ1〉 + 〈ψ1|�0〉

)3
}
. (8)

This formula can be rearranged according to the different orders:

E ≈ 〈�0|Ĥ |�0〉
〈�0|�0〉 + J2+ J3, (9)

where

J2= 1

〈�0|�0〉A,
(10)

J3= 1

〈�0|�0〉B −
〈�0|ψ1〉 + 〈ψ1|�0〉
〈�0|�0〉2 A+ 〈�0|ψ10

1 〉 + 〈ψ10
1 |�0〉

〈�0|�0〉2 A
′
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are the second- and third-order corrections to the value of the energy. TheJ3 contains
only intermolecular correction to the interaction energy.

The expressions forA, A′ andB are:

A= 〈ψ1|V̂ + Ŵ − E1|�0〉 + 〈�0|
(
V̂ + Ŵ )† − E∗1|ψ1〉 + Re

(〈ψ1|Ĥ 0− E0|ψ1〉
)
,

A′ = 〈ψ10
1 |V̂ − E intra

1 |�0〉 + 〈�0|V̂ †− E intra∗
1 |ψ10

1 〉 + Re
(〈ψ10

1 |Ĥ 0− E0|ψ10
1 〉

)
,

B = 〈�0|
(
V̂ + Ŵ )†− E∗1|ψ2〉 + 〈ψ2|V̂ + Ŵ − E1|�0〉 + Re

(〈ψ2|Ĥ 0− E0|ψ1〉
)

(11)

+ Re
(〈ψ1|V̂ + Ŵ − E1|ψ1〉

)− Re
(〈ψ10

1 |V̂ − E intra
1 |ψ10

1 〉
)

+ Re
(〈ψ1|Ĥ 0− E0|ψ2〉

)
.

HereE1 andE∗1 are the total (intra+ inter) first-order energy term and its complex
conjugate:

E1 = 〈�0|V̂ + Ŵ |�0〉
〈�0|�0〉 , E∗1 =

〈�0|(V̂ + Ŵ)†|�0〉
〈�0|�0〉 , (12)

while E intra
1 andE intra∗

1 are the first-order pure intramolecular energy and its complex
conjugate:

E intra
1 = 〈�0|V̂ |�0〉

〈�0|�0〉 , E intra∗
1 = 〈�0|(V̂ )†|�0〉

〈�0|�0〉 . (13)

As it can be seen in equation (10), the formula forJ2 is the same as that obtained
in [7,10]. It is interesting to note that both the second and third terms of equation (10)
contain third-order intramolecular contributions, but they exactly cancel, so the resulting
theory is only second-order in the intramolecular interactions – as it was intended. We
expect that the inclusion of a second-order interaction term in the PT permits taking into
account properly those polarization and charge transfer effects which were lacking from
our CHA-PT2 theory.
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